Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells

نویسندگان

  • Emmanuel P Dassa
  • Eric Dufour
  • Sérgio Gonçalves
  • Vincent Paupe
  • Gertjan A J Hakkaart
  • Howard T Jacobs
  • Pierre Rustin
چکیده

Cytochrome c oxidase (COX) deficiency is associated with a wide spectrum of clinical conditions, ranging from early onset devastating encephalomyopathy and cardiomyopathy, to neurological diseases in adulthood and in the elderly. No method of compensating successfully for COX deficiency has been reported so far. In vitro, COX-deficient human cells require additional glucose, pyruvate and uridine for normal growth and are specifically sensitive to oxidative stress. Here, we have tested whether the expression of a mitochondrially targeted, cyanide-resistant, alternative oxidase (AOX) from Ciona intestinalis could alleviate the metabolic abnormalities of COX-deficient human cells either from a patient harbouring a COX15 pathological mutation or rendered deficient by silencing the COX10 gene using shRNA. We demonstrate that the expression of the AOX, well-tolerated by the cells, compensates for both the growth defect and the pronounced oxidant-sensitivity of COX-deficient human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Mitochondrial-Related Transcriptional Levels of mitochondrial transcription factor A, Nuclear respiratory factor 1 and cytochrome c oxidase subunit 1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation

Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women wit...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Overexpression of Mitochondrial Genes (Mitochondrial Transcription Factor A and Cytochrome c Oxidase Subunit 1) in Mouse Metaphase II Oocytes following Vitrification via Cryotop

Background: Gamete cryopreservation is an inseparable part of assisted reproductive technology, and vitrification is an effective approach to the cryopreservation of oocytes. The aim of this study was to investigate vitrification effects on the expression levels of mitochondrial transcription factor A (Tfam) and mitochondrial-encoded cytochrome c oxidase subunit 1 (Cox1) in mouse metaphase II o...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

The Role of Cu in Respiration of Pea Plants and Heterotrophically Growing Scenedesmus Cells

Z. Naturforsch. 43c, 438-442 (1988); received December 7, 1987/February 10, 1988 Cu Deficiency, Cytochrome Oxidase, Mitochondria, Pea Plants, Scenedesmus In Scenedesmus about half of N A D H oxidation proceeds via a cyanide-sensitive and the other half via a cyanide-insensitive respiratory pathway. In contrast, respiration is completely cyanide sensitive in pea indicating that the alternative r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009